AMD Radeon Vega Frontier Edition 与 Windows Server 2016 的调整小记

最近入手了一块农企的显卡,Vega Frontier Edition。本来是一件令人兴奋的事情,但是在使用的过程中碰到了很多这样或者那样的问题,仅把一些问题以及其解决方案记录下来。

首先说明一下我的平台配置:
Windows 版本 – Windows Server 2016 Datacenter
系统内存 – 32 GB
CPU 类型 – Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz

前两天在AMD官网上寻找驱动的时候,有两个版本的驱动,一个是17.12.2 版本的Adrenalin Edition,另一个是18.Q1版本的Enterprise Edition 但是经过测试,仅有17.12.2版本的驱动可以安装在我的平台上,(后来用其他平台测试证实,是由于操作系统的版本导致的在新版Win10上可以正常运行,初步怀疑是和系统内核版本有关系)邮件咨询AMD后回复是:

由于Vega Frontier Edition显卡不是服务器显卡,暂时没有提供Windows Server下的驱动,故当您安装驱动时显示无法正确安装。建议您使用提供驱动的Win7/10 64位系统。

所以以下测试均基于17.12.2版本驱动。(但事实上很多问题的解决方法并不局限于此版本)

首先第一个问题就出在其显卡驱动模式切换上。根据宣传,这张卡有专用的驱动可以支持游戏模式和专业模式的切换,以满足开发和游戏有共同需求的群体(还有有信仰的人群体)。但是在切换显卡的时候会出现驱动程序回滚的情况。比方说在从17.12.2专业版切换到17.12.2游戏版的时候,往往会在切换完成后自动回滚至17.7游戏版,导致很多新游戏无法体验。这个问题的原因尚不明确,主要还是系统兼容性问题,由于AMD显卡驱动会在出现问题的时候自动回滚,所以在切换显卡驱动模式的时候,总有很大概率出发一些未知的错误。

这里的解决方法是打开设备管理器,找到显卡的驱动,点击更新驱动,在浏览计算机上的驱动程序里边点从驱动程序列表中选取,双击重新安装即可解决。

第二个问题出在其显卡温度控制策略上。在游戏模式下,其温度策略和电源控制可以用WattMan来调整,非常方便。但是在专业模式下,其并没有提供这样的一个工具。但是其默认的温度控制策略并不尽人意,风扇转速最高2000转,然而即便达到2000转,也很难维持核心温度不高于95度,尤其是在使用ProRender进行渲染的时候,常常会因为过热保护而导致程序出错,十分闹心。

后来想来想去想通过修改显卡vBIOS的手段来改变其温度控制策略,进行了一些尝试,由于没有现成的Vega BIOS Editor这样的修改工具,所以选择使用UE进行编辑,屡次尝试刷入BIOS均失败。后来发现在Vega之后,显卡的BIOS都进行了签名或者之类的操作,导致用户无法自行编辑BIOS。(好在显卡有双BIOS,可以在尝试失败后恢复原来的BIOS)

后来在网上找到了一个解决方法,即修改注册表的方法,其原理是通过给注册表中添加PowerPlay表,来调整显卡的策略。虽然具体的原理不是很了解,但是根据我的推测,由于这个PowerPlay表可以在vBIOS中可以找到一模一样的一段数据,应该就是显卡的电源温度频率等一些参数的配置表格,vBIOS中有一默认的,而驱动修改后的则会储存在注册表中方便调用。

由于其在注册表中的结构和其在vBIOS中的结构一致,所以在解析其结构的时候可以参照Linux中对于AMD显卡的参数处理:GitHub-torvalds/linux

以下为我根据我的需求修改了之后的注册表文件以及原版注册表文件。设置了最高风扇转速为4000转,最低转速为1000转,并在显卡温度低于40摄氏度时关闭散热风扇,在温度高于45度时重新开启。转速自动调整并控制显卡温度不超过70摄氏度。

MorePowerVegaFE-default

MorePowerVegaFE-optimized

我修改的过程则参考国外的一篇帖子:Preliminary view of AMD VEGA Bios

这篇帖子以Vega 64/Vega 56为例,列举了一些参数的修改和超频方法,其主要目的在于Vega 64/Vega 56的超频测试,由于我只需要修改其中的温度控制部分,所以我参照了这个结构体:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
typedef struct _ATOM_Vega10_Fan_Table_V2 {
0B UCHAR ucRevId;
E4 12 (0x12E4 = 4836)     USHORT usFanOutputSensitivity;
AC 0D (0xDAC = 3500 RPM)  USHORT usFanAcousticLimitRpm;
AC 0D (0xDAC = 3500 RPM)  USHORT usThrottlingRPM;
46 00 (0x46 = 70°C)       USHORT usTargetTemperature;
23 00 (0x23 = 35)         USHORT usMinimumPWMLimit;
54 03 (0x354 = 852)       USHORT usTargetGfxClk;
90 01 (0x190 = 400)       USHORT usFanGainEdge;
90 01 (0x190 = 400)       USHORT usFanGainHotspot;
90 01 (0x190 = 400)       USHORT usFanGainLiquid;
90 01 (0x190 = 400)       USHORT usFanGainVrVddc;
90 01 (0x190 = 400)       USHORT usFanGainVrMvdd;
90 01 (0x190 = 400)       USHORT usFanGainPlx;
90 01 (0x190 = 400)       USHORT usFanGainHbm;
01 (01 = on / 00 = off)   UCHAR ucEnableZeroRPM;
28 00 (0x28 = 40°C)       USHORT usFanStopTemperature;
32 00 (0x32 = 50°C)       USHORT usFanStartTemperature;
02                        UCHAR ucFanParameters;
08 (800 RPM)              UCHAR ucFanMinRPM;
23 (0x23 = 35 = 3500 RPM) UCHAR ucFanMaxRPM;
} ATOM_Vega10_Fan_Table_V2;

而如果想要修改其频率和电源策略的话,如果仅是修改最高状态,进行跑分测试,则完全可以参考原贴中的修改方式,而如果想要自己设置频率曲线或者显存频率曲线,则需要自行参考代码进行。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
typedef struct _ATOM_Vega10_POWERPLAYTABLE {
    typedef struct _ATOM_COMMON_TABLE_HEADER
    {
    B6 02 (0x2B6)  USHORT usStructureSize;
    08             UCHAR  ucTableFormatRevision;   /*Change it when the Parser is not backward compatible */
    01             UCHAR  ucTableContentRevision;  /*Change it only when the table needs to change but the firmware */
                                                   /*Image can't be updated, while Driver needs to carry the new table! */
    } ATOM_COMMON_TABLE_HEADER;
00                      UCHAR  ucTableRevision;
5C 00                   USHORT usTableSize;                        /* the size of header structure */
E1 06 00 00             ULONG  ulGoldenPPID;                       /* PPGen use only */
EE 2B 00 00             ULONG  ulGoldenRevision;                   /* PPGen use only */
1B 00                   USHORT usFormatID;                         /* PPGen use only */
48 00 00 00             ULONG  ulPlatformCaps;                     /* See ATOM_Vega10_CAPS_* */
80 A9 03 00 (2400MHz)   ULONG  ulMaxODEngineClock;                 /* For Overdrive. */
F0 49 02 00 (1500MHz)   ULONG  ulMaxODMemoryClock;                 /* For Overdrive. */
32 00                   USHORT usPowerControlLimit;
08 00                   USHORT usUlvVoltageOffset;                 /* in mv units */
00 00                   USHORT usUlvSmnclkDid;
00 00                   USHORT usUlvMp1clkDid;
00 00                   USHORT usUlvGfxclkBypass;
00 00                   USHORT usGfxclkSlewRate;
00                      UCHAR  ucGfxVoltageMode;
00                      UCHAR  ucSocVoltageMode;
00                      UCHAR  ucUclkVoltageMode;
00                      UCHAR  ucUvdVoltageMode;
00                      UCHAR  ucVceVoltageMode;
02                      UCHAR  ucMp0VoltageMode;
01                      UCHAR  ucDcefVoltageMode;
5C 00 (0x5C)            USHORT usStateArrayOffset;                 /* points to ATOM_Vega10_State_Array */
4F 02 (0x24F)           USHORT usFanTableOffset;                   /* points to ATOM_Vega10_Fan_Table */
46 02 (0x246)           USHORT usThermalControllerOffset;          /* points to ATOM_Vega10_Thermal_Controller */
94 00 (0x94)            USHORT usSocclkDependencyTableOffset;      /* points to ATOM_Vega10_SOCCLK_Dependency_Table */
9E 01 (0x19E)           USHORT usMclkDependencyTableOffset;        /* points to ATOM_Vega10_MCLK_Dependency_Table */
BE 00 (0xBE)            USHORT usGfxclkDependencyTableOffset;      /* points to ATOM_Vega10_GFXCLK_Dependency_Table */
28 01 (0x128)           USHORT usDcefclkDependencyTableOffset;     /* points to ATOM_Vega10_DCEFCLK_Dependency_Table */
7A 00 (0x7A)            USHORT usVddcLookupTableOffset;            /* points to ATOM_Vega10_Voltage_Lookup_Table */
8C 00 (0x8C)            USHORT usVddmemLookupTableOffset;          /* points to ATOM_Vega10_Voltage_Lookup_Table */
BC 01 (0x1BC)           USHORT usMMDependencyTableOffset;          /* points to ATOM_Vega10_MM_Dependency_Table */
00 00                   USHORT usVCEStateTableOffset;              /* points to ATOM_Vega10_VCE_State_Table */
00 00                   USHORT usReserve;                          /* No PPM Support for Vega10 */
72 02 (0x272)           USHORT usPowerTuneTableOffset;             /* points to ATOM_Vega10_PowerTune_Table */
00 00                   USHORT usHardLimitTableOffset;             /* points to ATOM_Vega10_Hard_Limit_Table */
90 00 (0x90)            USHORT usVddciLookupTableOffset;           /* points to ATOM_Vega10_Voltage_Lookup_Table */
A8 02 (0x2A8)           USHORT usPCIETableOffset;                  /* points to ATOM_Vega10_PCIE_Table */
6D 01 (0x16D)           USHORT usPixclkDependencyTableOffset;      /* points to ATOM_Vega10_PIXCLK_Dependency_Table */
43 01 (0x143)           USHORT usDispClkDependencyTableOffset;     /* points to ATOM_Vega10_DISPCLK_Dependency_Table */
97 01 (0x197)           USHORT usPhyClkDependencyTableOffset;      /* points to ATOM_Vega10_PHYCLK_Dependency_Table */
} ATOM_Vega10_POWERPLAYTABLE;

上面这个表格是PowerPlay的Header结构体,里面包含了很多其它表格的地址等,值得注意的是,如果将我提供的注册表中的文件中16进制的第一字节定义为0地址,则该表格中所有的Table的地址指针需要减去0x34.

所有表格的结构均可参考Linux驱动中的vega10_pptable.h文件将数据与结构体一一比对即可。

(完)

ADF4251 锁相环 使用笔记 (配合HAL库)

之前在比赛准备的时候有准备过关于锁相环相关的器件,这里介绍一下ADF4351这款宽带频率合成器的使用。

由于我使用的是购买来的成品模块,所以这里着重讲的是软件驱动方面。

ADF4351 用户手册

首先根据手册可以看到,这是一款35MHz到4.4GHz的锁相环芯片,具有低相位噪声等优点,同时支持小数和整数分频。其实它的VCO是2.2GHz到4.4GHz的振荡器,其余35MHz到2.2GHz全部是由可编程的输出分频器分频得到的。这款芯片的性能是非常好的,输出的信号相位噪声很低,手册上给出的数据是−100dBc/Hz 3 kHz from 2111.28 MHz carrier,在实际测试中发现我手中的这块芯片甚至略微超出了这个参数。

接下来关注到,其配置方式是通过一个3-wire的串行总线完成的,那么可以关注一下这个总线的通信时序:

从时序可以看出,这个三线串口中,有一条使能线,一条时钟线和一条数据线,这个三线串口其实就是SPI接口,所以我们可以直接调用单片机的硬件SPI模块来与其通信。并且需要注意的是,在这个协议当中,后三位表示的是寄存器的编号,而且这个协议的速率不应该高于20Mbps。

关于如何配置这块芯片,就需要大致的了解一下它的工作原理。首先向其输入一个REF-in的参考输入信号,然后这个参考信号在通过一个缓冲器之后,会进入一个名为R counter的计数器中,这里呢就使用了计数器对输入的参考信号进行分频,这一步的分频可以使得分频后的信号拥有更小的相位噪声。同时,由压控振荡器VCO产生的信号经过N counter计数器后,一并通入鉴频鉴相器中。最后将鉴频鉴相器的输入通入电荷泵,通过电荷泵后的电压再用来控制VCO。所以输出频率的计算公式即为:

但是需要注意的是,RF_OUT的值必须是一个2.2G到4.4G之间的值,因为它是压控振荡器VCO的输出值。而最终芯片的输出频率35MHz-4.4GHz需要将RF_OUT的输出值再进行一个2的次方倍分频才行。

关于寄存器的功能,便不再详述,手册上写的非常详尽。

最后附上代码(双击代码区域复制):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
/**
  ******************************************************************************
  * File Name          : main.c
  * Description        : Main program body
  ******************************************************************************
  *
  * COPYRIGHT(c) 2017 STMicroelectronics
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f1xx_hal.h"
 
/* USER CODE BEGIN Includes */
 
/* USER CODE END Includes */
 
/* Private variables ---------------------------------------------------------*/
CRC_HandleTypeDef hcrc;
 
IWDG_HandleTypeDef hiwdg;
 
SPI_HandleTypeDef hspi2;
 
TIM_HandleTypeDef htim6;
TIM_HandleTypeDef htim7;
 
WWDG_HandleTypeDef hwwdg;
 
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
#define PLL_PROT hspi2
typedef struct PLL_Configure{
	enum{
		PLL_DISABLE = 0,
		PLL_ENABLE
	};
	unsigned short integer_value;						//16-bit Greater than 23, to 65535
	unsigned short fractional_value;				//12-bit 0 to 4095
	unsigned char phase_adjust;							//1-bit 0-OFF 1-ON
	enum{
		PHASE_ADJ_OFF = 0,
		PHASE_ADJ_ON
	}phase_adjust_type;
	//unsigned char prescaler;								//1-bit 0-(4/5) 1-(8/9)
	enum prescaler_type{
		PRESCALER_4Div5 = 0,
		PRESCALER_8Div9
	}prescaler;
	//enum prescaler_type prescaler;
	unsigned short phase_value;							//12-bit 0 to 4095, 1 is recommended
	unsigned short modulus_value;						//12-bit Greater than 2, to 4095
	unsigned char low_noise_and_low_spur;		//2-bit 00b-(Low Noise Mode) 11b-(Low Spur Mode)
	enum{
		LOW_NOISE = 0,
		LOW_SUPR = 3
	}low_nose_and_low_spur_type;
	unsigned char muxout;										//3-bit
	enum{
		MUXOUT_Three_State_Output = 0,
		MUXOUT_DVdd,
		MUXOUT_DGND,
		MUXOUT_R_COUNTER,
		MUXOUT_N_DIVIDER,
		MUXOUT_ANALOG_LOCK_DETECT,
		MUXOUT_DIGITAL_LOCK_DETECT,
		MUXOUT_RESERVED
	}muxout_type;
	//000b-Three-State Output
	//001b-DVdd
	//010b-DGND
	//011b-R Counter Output
	//100b-N Divider Output
	//101b-Analog Lock Detect
	//110b-Digital Lock Detect
	//111b-Reserved
	unsigned char reference_doubler;				//1-bit 0-Disable 1-Enable
	unsigned char reference_divide_by2;			//1-bit 0-Disable 1-Enable
	unsigned short r_counter;								//10-bit Greater than 1, to 1023
	unsigned char double_buffer;						//1-bit 0-Disable 1-Enable
	unsigned char charge_pump_current;			//4-bit 0 to 15
	/*CHARGE PUMP CURRENT SETTING VALUE
	0000 0.31
	0001 0.63
	0010 0.94
	0011 1.25
	0100 1.56
	0101 1.88
	0110 2.19
	0111 2.50
	1000 2.81
	1001 3.13
	1010 3.44
	1011 3.75
	1100 4.06
	1101 4.38
	1110 4.69
	1111 5.00*/
	unsigned char LDF;											//1-bit 0-FRAC-N 1-INT-N
	enum{
		FRAC_N = 0,
		INT_N
	}LDF_type;
	unsigned char LDP;											//1-bit 0-10ns 1-6ns
	enum{
		LDP_10ns = 0,
		LDP_6ns
	}LDP_type;
	unsigned char PD_polarity;							//1-bit 0-NEGTIVE 1-POSITIVE
	enum{
		NEGTIVE = 0,
		POSITIVE
	}PD_polarity_type;
	unsigned char power_down;								//1-bit 0-Disable 1-Enable
	unsigned char CP_three_state;						//1-bit 0-Disable 1-Enable
	unsigned char counter_reset;						//1-bit 0-Disable 1-Enable
	unsigned char band_select_clock;				//1-bit 0-LOW 1-HIGH
	enum{
		LOW = 0,
		HIGH
	}band_select_clock_type;
	unsigned char antibacklash_pulse_width;	//1-bit 0-6ns 1-3ns
	enum{
		ANTIBACKLASH_PULSE_6ns = 0,
		ANTIBACKLASH_PULSE_3ns
	}antibacklash_pulse_type;
	unsigned char charge_cancelation;				//1-bit 0-Disable 1-Enable
	unsigned char cycle_slip_reduction;			//1-bit 0-Disable	1-Enable
	unsigned char clk_div_mode;							//2-bit
	enum{
		CLOCK_DIVIDER_OFF = 0,
		FAST_LOCK_ENABLE,
		RESYNC_ENABLE
	}clk_div_mode_type;
	unsigned short clock_divider_value;			//12-bit 0 to 4095
	unsigned char feedback_select;					//1-bit 0-Divided 1-Fundamental
	enum{
		DIVIDED = 0,
		FUNDAMENTAL
	}feedback_select_type;
	unsigned char RF_divider_select;				//3-bit
	/*RF DIVIDER SELECT
	000 /1
	001 /2
	010 /4
	011 /8
	100 /16
	101 /32
	110 /64
	*/
	unsigned char band_select_clock_divider;//8-bit Greater than 1, to 255
	unsigned char VCO_power_down;						//1-bit 0-Power Up 1-Power Down
	enum{
		VCO_POWER_UP = 0,
		VCO_POWER_DOWN
	}VCO_power_down_type;
	unsigned char mute_till_lock_detect;		//1-bit 0-Mute Disable 1-Mute Enable
	enum{
		MUTE_DISABLE = 0,
		MUTE_ENABLE
	}mute_till_lock_detect_type;
	unsigned char AUX_output_select;				//1-bit 0-Divided Output 1-Fundamental
	enum{
		DIVIDED_OUTPUTE = 0
		//FUNDAMENTAL
	}AUX_output_select_type;
	unsigned char AUX_output;								//1-bit 0-Disable 1-Enable
	unsigned char AUX_output_power;					//2-bit 0 to 3
	/*AUX OUTPUT POWER
	00 -4dBm
	01 -1dBm
	10 +2dBm
	11 +5dBm
	*/
	unsigned char RF_OUT;										//1-bit 0-Disable 1-Enable
	unsigned char output_power;							//2-bit
	/*OUTPUT POWER
	00 -4dBm
	01 -1dBm
	10 +2dBm
	11 +5dBm
	*/
	unsigned char LD_pin_mode;							//2-bit
	enum{
		LD_LOW = 0,
		DIGITAL_LOCK_DETECT,
		//LOW,
		LD_HIGH = 3
	}LD_pin_mode_type;
}PLL_CFG;
/* USER CODE END PV */
 
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void Error_Handler(void);
static void MX_GPIO_Init(void);
static void MX_CRC_Init(void);
static void MX_IWDG_Init(void);
static void MX_TIM6_Init(void);
static void MX_TIM7_Init(void);
static void MX_WWDG_Init(void);
static void MX_SPI2_Init(void);
static void MX_NVIC_Init(void);
 
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
void PLL_Config(PLL_CFG *config);
void PLL_Init(void);
void PLL_Enable(void);
void PLL_Disable(void);
void PLL_RF_Enable(void);
void PLL_RF_Disable(void);
/* USER CODE END PFP */
 
/* USER CODE BEGIN 0 */
 
/* USER CODE END 0 */
 
int main(void)
{
 
  /* USER CODE BEGIN 1 */
	char a = 0;
  /* USER CODE END 1 */
 
  /* MCU Configuration----------------------------------------------------------*/
 
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
 
  /* Configure the system clock */
  SystemClock_Config();
 
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_CRC_Init();
  MX_IWDG_Init();
  MX_TIM6_Init();
  MX_TIM7_Init();
  MX_WWDG_Init();
  MX_SPI2_Init();
 
  /* Initialize interrupts */
  MX_NVIC_Init();
 
  /* USER CODE BEGIN 2 */
	HAL_Delay(500);
	PLL_Init();
  /* USER CODE END 2 */
 
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
  /* USER CODE END WHILE */
 
  /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
 
}
 
/** System Clock Configuration
*/
void SystemClock_Config(void)
{
 
  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
 
    /**Initializes the CPU, AHB and APB busses clocks 
    */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
 
    /**Initializes the CPU, AHB and APB busses clocks 
    */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
 
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
 
    /**Configure the Systick interrupt time 
    */
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
 
    /**Configure the Systick 
    */
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
 
  /* SysTick_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
 
/** NVIC Configuration
*/
static void MX_NVIC_Init(void)
{
  /* EXTI9_5_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(EXTI9_5_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(EXTI9_5_IRQn);
  /* EXTI15_10_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(EXTI15_10_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);
  /* SPI2_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SPI2_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(SPI2_IRQn);
}
 
/* CRC init function */
static void MX_CRC_Init(void)
{
 
  hcrc.Instance = CRC;
  if (HAL_CRC_Init(&hcrc) != HAL_OK)
  {
    Error_Handler();
  }
 
}
 
/* IWDG init function */
static void MX_IWDG_Init(void)
{
 
  hiwdg.Instance = IWDG;
  hiwdg.Init.Prescaler = IWDG_PRESCALER_4;
  hiwdg.Init.Reload = 4095;
  if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
  {
    Error_Handler();
  }
 
}
 
/* SPI2 init function */
static void MX_SPI2_Init(void)
{
 
  hspi2.Instance = SPI2;
  hspi2.Init.Mode = SPI_MODE_MASTER;
  hspi2.Init.Direction = SPI_DIRECTION_2LINES;
  hspi2.Init.DataSize = SPI_DATASIZE_16BIT;
  hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi2.Init.NSS = SPI_NSS_SOFT;
  hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi2.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi2) != HAL_OK)
  {
    Error_Handler();
  }
 
}
 
/* TIM6 init function */
static void MX_TIM6_Init(void)
{
 
  TIM_MasterConfigTypeDef sMasterConfig;
 
  htim6.Instance = TIM6;
  htim6.Init.Prescaler = 0;
  htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim6.Init.Period = 0;
  if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
  {
    Error_Handler();
  }
 
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
 
}
 
/* TIM7 init function */
static void MX_TIM7_Init(void)
{
 
  TIM_MasterConfigTypeDef sMasterConfig;
 
  htim7.Instance = TIM7;
  htim7.Init.Prescaler = 0;
  htim7.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim7.Init.Period = 0;
  if (HAL_TIM_Base_Init(&htim7) != HAL_OK)
  {
    Error_Handler();
  }
 
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim7, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
 
}
 
/* WWDG init function */
static void MX_WWDG_Init(void)
{
 
  hwwdg.Instance = WWDG;
  hwwdg.Init.Prescaler = WWDG_PRESCALER_1;
  hwwdg.Init.Window = 64;
  hwwdg.Init.Counter = 64;
  if (HAL_WWDG_Init(&hwwdg) != HAL_OK)
  {
    Error_Handler();
  }
 
}
 
/** Configure pins as 
        * Analog 
        * Input 
        * Output
        * EVENT_OUT
        * EXTI
*/
static void MX_GPIO_Init(void)
{
 
  GPIO_InitTypeDef GPIO_InitStruct;
 
  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
 
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, PLL_EN_Pin|RF_OUT_EN_Pin, GPIO_PIN_RESET);
 
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(Load_Enable_GPIO_Port, Load_Enable_Pin, GPIO_PIN_SET);
 
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LED0_GPIO_Port, LED0_Pin, GPIO_PIN_SET);
 
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_SET);
 
  /*Configure GPIO pins : PLL_EN_Pin RF_OUT_EN_Pin LED0_Pin */
  GPIO_InitStruct.Pin = PLL_EN_Pin|RF_OUT_EN_Pin|LED0_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
 
  /*Configure GPIO pin : Load_Enable_Pin */
  GPIO_InitStruct.Pin = Load_Enable_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  HAL_GPIO_Init(Load_Enable_GPIO_Port, &GPIO_InitStruct);
 
  /*Configure GPIO pin : Digit_Lock_Detect_Pin */
  GPIO_InitStruct.Pin = Digit_Lock_Detect_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(Digit_Lock_Detect_GPIO_Port, &GPIO_InitStruct);
 
  /*Configure GPIO pin : Analog_Lock_Detect_Pin */
  GPIO_InitStruct.Pin = Analog_Lock_Detect_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(Analog_Lock_Detect_GPIO_Port, &GPIO_InitStruct);
 
  /*Configure GPIO pin : LED1_Pin */
  GPIO_InitStruct.Pin = LED1_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  HAL_GPIO_Init(LED1_GPIO_Port, &GPIO_InitStruct);
 
}
 
/* USER CODE BEGIN 4 */
void PLL_Enable(void)
{
	HAL_GPIO_WritePin(PLL_EN_GPIO_Port,PLL_EN_Pin,GPIO_PIN_SET);
}
 
void PLL_Disable(void)
{
	HAL_GPIO_WritePin(PLL_EN_GPIO_Port,PLL_EN_Pin,GPIO_PIN_RESET);
}
 
void PLL_RF_Enable(void)
{
	HAL_GPIO_WritePin(RF_OUT_EN_GPIO_Port,RF_OUT_EN_Pin,GPIO_PIN_SET);
}
 
void PLL_RF_Disable(void)
{
	HAL_GPIO_WritePin(RF_OUT_EN_GPIO_Port,RF_OUT_EN_Pin,GPIO_PIN_RESET);
}
 
void PLL_Config(PLL_CFG *config)
{
	uint32_t Reg[6];
	uint8_t i;
	Reg[0] &= 0x00000000;
	Reg[0] |= ((uint32_t)config->integer_value 						< < 15)	& 0x7FFF8000;
	Reg[0] |= ((uint32_t)config->fractional_value 				< < 3)		& 0x00007FF8;
	Reg[0] |= 0x00000000;
	Reg[1] &= 0x00000000;
	Reg[1] |= ((uint32_t)config->phase_adjust 						< < 28)	& 0x10000000;
	Reg[1] |= ((uint32_t)config->prescaler 								< < 27)	& 0x08000000;
	Reg[1] |= ((uint32_t)config->phase_value 							< < 15)	& 0x07FF8000;
	Reg[1] |= ((uint32_t)config->modulus_value 						< < 3)		& 0x00007FF8;
	Reg[1] |= 0x00000001;
	Reg[2] &= 0x00000000;
	Reg[2] |= ((uint32_t)config->low_noise_and_low_spur 	< < 29)	& 0x60000000;
	Reg[2] |= ((uint32_t)config->muxout 									< < 26)	& 0x1C000000;
	Reg[2] |= ((uint32_t)config->reference_doubler 				< < 25)	& 0x02000000;
	Reg[2] |= ((uint32_t)config->reference_divide_by2 		< < 24)	& 0x01000000;
	Reg[2] |= ((uint32_t)config->r_counter 								< < 14)	& 0x00FFC000;
	Reg[2] |= ((uint32_t)config->double_buffer 						< < 13)	& 0x00002000;
	Reg[2] |= ((uint32_t)config->charge_pump_current 			< < 9)		& 0x00001E00;
	Reg[2] |= ((uint32_t)config->LDF 											< < 8)		& 0x00000100;
	Reg[2] |= ((uint32_t)config->LDP 											< < 7)		& 0x00000080;
	Reg[2] |= ((uint32_t)config->PD_polarity 							< < 6)		& 0x00000040;
	Reg[2] |= ((uint32_t)config->power_down 							< < 5)		& 0x00000020;
	Reg[2] |= ((uint32_t)config->CP_three_state 					< < 4)		& 0x00000010;
	Reg[2] |= ((uint32_t)config->counter_reset 						< < 3)		& 0x00000008;
	Reg[2] |= 0x00000002;
	Reg[3] &= 0x00000000;
	Reg[3] |= ((uint32_t)config->band_select_clock 				< < 23)	& 0x00800000;
	Reg[3] |= ((uint32_t)config->antibacklash_pulse_width < < 22)	& 0x00400000;
	Reg[3] |= ((uint32_t)config->charge_cancelation				< < 21)	& 0x00200000;
	Reg[3] |= ((uint32_t)config->cycle_slip_reduction			< < 18)	& 0x00040000;
	Reg[3] |= ((uint32_t)config->clk_div_mode							< < 15)	& 0x00018000;
	Reg[3] |= ((uint32_t)config->clock_divider_value			< < 3)		& 0x00007FF8;
	Reg[3] |= 0x00000003;
	Reg[4] &= 0x00000000;
	Reg[4] |= ((uint32_t)config->feedback_select					< < 23)	& 0x00800000;
	Reg[4] |= ((uint32_t)config->RF_divider_select				< < 20)	& 0x00700000;
	Reg[4] |= ((uint32_t)config->band_select_clock_divider< < 12)	& 0x000FF000;
	Reg[4] |= ((uint32_t)config->VCO_power_down						< < 11)	& 0x00000800;
	Reg[4] |= ((uint32_t)config->mute_till_lock_detect		< < 10)	& 0x00000400;
	Reg[4] |= ((uint32_t)config->AUX_output_select				< < 9)		& 0x00000200;
	Reg[4] |= ((uint32_t)config->AUX_output								< < 8)		& 0x00000100;
	Reg[4] |= ((uint32_t)config->AUX_output_power					< < 6)		& 0x000000C0;
	Reg[4] |= ((uint32_t)config->RF_OUT										< < 5)		& 0x00000020;
	Reg[4] |= ((uint32_t)config->output_power							< < 3)		& 0x00000018;
	Reg[4] |= 0x00000004;
	Reg[5] &= 0x00000000;
	Reg[5] |= ((uint32_t)config->LD_pin_mode							< < 22)	& 0x00C00000;
	Reg[5] |= 0x00180000;
	Reg[5] |= 0x00000005;
	for(i=0;i&lt;6;i++)
	{
		Reg[i] = ((Reg[i] >> 16) & 0x0000FFFF) | ((Reg[i] < < 16) & 0xFFFF0000); 
	}
	HAL_GPIO_WritePin(Load_Enable_GPIO_Port,Load_Enable_Pin,GPIO_PIN_RESET);
	HAL_SPI_Transmit(&PLL_PROT,(uint8_t*)&Reg[5],2,1000);
	HAL_GPIO_WritePin(Load_Enable_GPIO_Port,Load_Enable_Pin,GPIO_PIN_SET);
	HAL_GPIO_WritePin(Load_Enable_GPIO_Port,Load_Enable_Pin,GPIO_PIN_RESET);
	HAL_SPI_Transmit(&PLL_PROT,(uint8_t*)&Reg[4],2,1000);
	HAL_GPIO_WritePin(Load_Enable_GPIO_Port,Load_Enable_Pin,GPIO_PIN_SET);
	HAL_GPIO_WritePin(Load_Enable_GPIO_Port,Load_Enable_Pin,GPIO_PIN_RESET);
	HAL_SPI_Transmit(&PLL_PROT,(uint8_t*)&Reg[3],2,1000);
	HAL_GPIO_WritePin(Load_Enable_GPIO_Port,Load_Enable_Pin,GPIO_PIN_SET);
	HAL_GPIO_WritePin(Load_Enable_GPIO_Port,Load_Enable_Pin,GPIO_PIN_RESET);
	HAL_SPI_Transmit(&PLL_PROT,(uint8_t*)&Reg[2],2,1000);
	HAL_GPIO_WritePin(Load_Enable_GPIO_Port,Load_Enable_Pin,GPIO_PIN_SET);
	HAL_GPIO_WritePin(Load_Enable_GPIO_Port,Load_Enable_Pin,GPIO_PIN_RESET);
	HAL_SPI_Transmit(&PLL_PROT,(uint8_t*)&Reg[1],2,1000);
	HAL_GPIO_WritePin(Load_Enable_GPIO_Port,Load_Enable_Pin,GPIO_PIN_SET);
	HAL_GPIO_WritePin(Load_Enable_GPIO_Port,Load_Enable_Pin,GPIO_PIN_RESET);
	HAL_SPI_Transmit(&PLL_PROT,(uint8_t*)&Reg[0],2,1000);
	HAL_GPIO_WritePin(Load_Enable_GPIO_Port,Load_Enable_Pin,GPIO_PIN_SET);
}
 
void PLL_Init(void)
{
	PLL_CFG PLL_InitStruct;
	PLL_InitStruct.integer_value = 22000;
	PLL_InitStruct.fractional_value = 0;
	//
	PLL_InitStruct.phase_adjust = PHASE_ADJ_OFF;
	PLL_InitStruct.prescaler = PRESCALER_8Div9;
	PLL_InitStruct.phase_value = 0;
	PLL_InitStruct.modulus_value = 2;
	//
	PLL_InitStruct.low_noise_and_low_spur = LOW_NOISE;
	PLL_InitStruct.muxout = MUXOUT_ANALOG_LOCK_DETECT;
	PLL_InitStruct.reference_doubler = ENABLE;
	PLL_InitStruct.reference_divide_by2 = ENABLE;
	PLL_InitStruct.r_counter = 250;
	PLL_InitStruct.double_buffer = DISABLE;
	PLL_InitStruct.charge_pump_current = 7;
	PLL_InitStruct.LDF = INT_N;
	PLL_InitStruct.LDP = LDP_10ns;
	PLL_InitStruct.PD_polarity = POSITIVE;
	PLL_InitStruct.power_down = DISABLE;
	PLL_InitStruct.CP_three_state = DISABLE;
	PLL_InitStruct.counter_reset = DISABLE;
	//
	PLL_InitStruct.band_select_clock = LOW;
	PLL_InitStruct.antibacklash_pulse_width = INT_N;
	PLL_InitStruct.cycle_slip_reduction = DISABLE;
	PLL_InitStruct.clk_div_mode = FAST_LOCK_ENABLE;
	PLL_InitStruct.clock_divider_value = 4;
	//
	PLL_InitStruct.feedback_select = FUNDAMENTAL;
	PLL_InitStruct.RF_divider_select = 6;
	PLL_InitStruct.band_select_clock_divider = 80;
	PLL_InitStruct.VCO_power_down = VCO_POWER_UP;
	PLL_InitStruct.mute_till_lock_detect = MUTE_ENABLE;
	PLL_InitStruct.AUX_output_select = DIVIDED_OUTPUTE;
	PLL_InitStruct.AUX_output = DISABLE;
	PLL_InitStruct.AUX_output_power = 0;
	PLL_InitStruct.RF_OUT = ENABLE;
	PLL_InitStruct.output_power = 5;
	//
	PLL_InitStruct.LD_pin_mode = DIGITAL_LOCK_DETECT;
	//
	PLL_Enable();
	PLL_Config(&PLL_InitStruct);
}
 
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
	GPIO_PinState tmp;
	switch(GPIO_Pin)
	{
		case Digit_Lock_Detect_Pin:
			tmp = HAL_GPIO_ReadPin(Digit_Lock_Detect_GPIO_Port,Digit_Lock_Detect_Pin);
			HAL_GPIO_WritePin(LED0_GPIO_Port,LED0_Pin,!tmp);
			if(tmp == GPIO_PIN_SET)
			{
				PLL_RF_Enable();
			}
			break;
		case Analog_Lock_Detect_Pin:
			tmp = HAL_GPIO_ReadPin(Analog_Lock_Detect_GPIO_Port,Analog_Lock_Detect_Pin);
			HAL_GPIO_WritePin(LED1_GPIO_Port,LED1_Pin,!tmp);
			break;
	}
}
/* USER CODE END 4 */
 
/**
  * @brief  This function is executed in case of error occurrence.
  * @param  None
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler */
  /* User can add his own implementation to report the HAL error return state */
  while(1) 
  {
  }
  /* USER CODE END Error_Handler */ 
}
 
#ifdef USE_FULL_ASSERT
 
/**
   * @brief Reports the name of the source file and the source line number
   * where the assert_param error has occurred.
   * @param file: pointer to the source file name
   * @param line: assert_param error line source number
   * @retval None
   */
void assert_failed(uint8_t* file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
    ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
 
}
 
#endif
 
/**
  * @}
  */ 
 
/**
  * @}
*/ 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

(完)

瑞萨杯 电赛 2017年H题 远程幅频特性测试装置 题简解

已经有半年多没有更新过博客了啊,这段时间一直是忙的不可开交,总觉得浪费点时间来写博客是一件特别奢侈的事情。不过好在是最后熬过了这段时间,稍微能够放松一下了。

要说起来这段时间主要去做什么了,其实和我这篇博文要讲的是同一件事情。这段时间一直在准备比赛。全国大学生电子设计大赛,也就是所谓的“瑞萨杯”。

而其实自从比赛结束后我一直计划着写这样一篇博文,就是讲一讲我和我的队友到底做了一个什么样的东西去参加这个比赛,做一个简单的题解。

这次电赛当中我们选择的是H题,远程幅频特性测试装置。比赛原题文档如下:

远程幅频特性测试装置(H题)

首先关注它的基本要求:

1)1MHz-40MHz步进为1MHz且幅值可调的信号源。

2)0-40dB连续可调带宽1MHz-40MHz的放大器,并且输入输出阻抗为600Ω,最大输出1V峰峰值。

3)使用示波器显示幅频特性的装置。

这三个要求其实难度相对来说是比较低的,作为一个基本的仪器仪表题目来说,相较于往年,其难度要低的很多,在我印象中往年有一道矢量网络分析仪的题目,那道题目要求自行制作DDS,不能使用成品,而这道题则宽松许多。

首先说说信号源部分,这个部分我们最快能想到的办法就是使用DDS来作为信号源,而在信号源的选型中,最好这个信号源支持幅度调节。最开始的时候我们选用的是AD9959,这是一个四通道DDS,500MSPS采样率。但是不足的地方就是它的输出幅度不能调节。(至少我翻看了好几遍手册没有找到幅度调节字),然后我们就考虑AD9854,但是转念一想那么大的发热量万一到了测试的时候,芯片不稳定了,可就不好了。所以最后我们选择了AD9910这款功耗较小的1GSPS的DDS。剩下的就是参考手册上面的寄存器map,然后编程序驱动它就好了。这里我的队友使用了一个OLED显示屏和矩阵键盘,人机交互更加轻松了,可以自由的设置点频扫频频率和幅度。我们选用的单片机型号是STM32F103ZET6.

其次就是这个放大器的设计,最开始的时候我们考虑使用TPS5430搭建DC-DC把单5V电源转换成±5V电源,这样便可以使用我们的老朋友VCA821作为放大器部分的解决方案(我觉得这样会比较优美)。电源方面我们可以先将电压升高到±9V,然后使用7805和7905对它进行稳压,然后在接上大的固态电容滤掉开关噪声,实际测试这种方法可以做到电源纹波小于3mV,当然这种方法也把DC-DC的效率抛的远远的,根本没有效率可言。然而不幸的是,比赛到第二天的时候我们收到通知,这道题禁止使用DC-DC,于是我们只好考虑单电源运放方案(无疑击碎了我们所有的幻想)。于是我们想到一款ADI的单电源程控放大器,AD8367是一个带宽500MHz的程控放大器,其理论最大放大倍数可以达到45dB,但是遗憾的是,它的最大放大倍数45dB仅仅只是对于200MHz左右的信号来说的,根据测试,它在1M-40M的时候最大只能到35dB,于是我们只能选择将两级放大器级联以达到要求的放大倍数,这也是我们最终采用的方案。

最后就是幅频特性测试及显示装置,这里首先要采集幅频数据,所以我们先对放大器输出的信号进行检波,我们采用了AD8362作为检波芯片,但是在使用这个芯片的时候有一个小小的问题,就是我们前级一直是600Ω阻抗匹配,但是如果用600Ω作为这个芯片的输入阻抗匹配的话,就会在幅频特性上显示出略微的不平坦,于是我们使用9018做了一个射级跟随器,做了阻抗转换,解决了这个问题。在这一级我们直接使用单片机的ADC对AD8362的输出进行采集,然后结合DDS通过串口发来的频率信息,采集待测器件的幅频特性。然后通过DA的两个通道分别输出三角波和采集回来的数据波形,利用示波器的XY显示模式进行扫描显示。这里我们选用的单片机型号是STM32F767ZIT6,不过不是因为这个单片机有多么强悍含有FPU和DSP这些原因,仅仅只是因为手头只剩这个单片机的板子了,所以只好用它,个人觉得F103也依然能够胜任。

接下来说说本题的提高部分,这个提高部分说难也不难,但是说简单也绝对不简单,如果之前写过关于socket方面程序,那么这里就会显得非常游刃有余,但是如果之前没有接触过的话,就会浑身难受。而我碰巧之前有段时间接触过这方面的代码,可以说是非常的幸运了。

1)放大器单5V供电输出有效值1V,无明显失真。

2)通过一条1.5m的双绞线在另一台示波器上显示幅频特性。

3)通过WiFi连接路由器,通过局域网在笔记本电脑上显示幅频特性。

4)其他。

简单的来说由于我们一开始考虑放大器方案的时候,我们就着眼于扩展部分,希望一步到位,所以如果采用了基础部分所述的方案,那么这个指标也已经达到了,AD8367的输出有效值可以达到1.3V左右,完全符合题目要求,只要注意隔直和加偏执的问题,避免削峰和削底就好。还有为了保证放大倍数,放大器级联中间就不必要考虑阻抗匹配的问题了,直接输出接输入就好,避免不必要的放大倍数损失(而且主要我个人觉得40M的信号匹配不匹配区别不大)。

接下来就是双绞线传输的问题,这里首先要冷静思考,1.5M的双绞线,并且要求其中一根线为地线,也就是说只能在其中一根线上面传输信号,而且考虑到距离的长度,这里我们只能选择穿数字信号,将模拟信号传输过去是不太能行得通的方案,于是我们这根双绞线可以用于数字通信。至于通信协议,当然是越方便越好,我们选择了TTL电平的串口协议,这样一来两边便建立了一个单工通信(虽然完全可以做半双工,但是我觉得单工就够用了)。这个时候就面临了一个很严重的问题,那就是数据的组帧校验协议。如果不组帧的话,数据误码暂且不提,数据出现丢失,错位等问题会使通信极不可靠。这个时候我想起了之前做过的一个通信协议,这个协议我也不知道叫什么名字,它是恩智浦公司的一款NFC芯片PN532和单片机通信的协议,虽然协议比较简单,但是我所需要解决的问题它都很完美的解决了,正所谓麻雀虽小五脏俱全。其协议内容如下:

利用这个协议,在本地端按照协议封好帧,然后在远程端使用状态机进行接收校验,便可以还原出幅频特性图。如果在校验过程中发现数据有误,则整帧丢弃。

最后就是WiFi传输的问题了,这里我选用了一款国产的WiFi芯片ESP8266,这款芯片虽然便宜,但是绝对性能强劲,值这个价钱。我们利用它与路由器连接,并与上位机建立TCP连接,把幅频特性曲线的数据发到上位机。不过这里我也没有使用它默认提供的AT指令,而是下载了官网提供的IDE,修改了它上面的固件,自己增加了一个”AT+TRANS”的指令,一旦执行这个指令,它便开始尝试连接服务器,当服务器连接上之后,它会向服务器发送自己的标识,然后向单片机回复OK后便进入透明传输模式,即向串口发送的一切数据都会原模原样的发送到上位机服务器。

在上位机端,我写了两个小程序,一个就是使用TCP的Select模式,实现单线程多用户接入的小型服务端程序,这个程序主要负责识别客户端的标识,然后将单片机发回的数据存入缓冲区,然后再将数据发送给图形显示客户端。而另一个程序就是图形显示客户端,这个客户端我使用了OpenGL进行绘图,并且用了很简单的connect和recv方式连接服务器端,先发送自己的标识,然后开始不停接收数据,并将其绘制到屏幕上。后来我为了让它显得美观,我还向里边加入了一个链表作为队列,缓冲从服务器端接来的数据,然后逐次变暗,模拟余辉的效果。实际效果是这样的(不过这个是我第一版的程序啦,后来把坐标都校准成整数了,小数看的人难受,但是找不到新版的照片了,凑合下):

到此为止,这就是我们对于这道题的所有方案,从方案制定到最后实现花了十几个小时,剩下的时间都在不停地调试,小修小补,找bug。不过就我个人来说,我对这套方案还是很满意的。

最后呢小小的骄傲一下,凭借这个方案,我最终拿到了H题全国第一的成绩,不过最后在瑞萨杯评比中失利,还是有点小小的遗憾的。不过能和各个题目的全国第一过招,还是很过瘾的。

PS:文中所有提到的芯片型号可以通过点击链接转到相应的介绍,都是官网介绍。

实物图:

(完)